Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 247: 118275, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246295

RESUMO

The study investigated the dissipation ability of a vegetated free water surface (FWS) constructed wetland (CW) in treating pesticides-contaminated agricultural runoff/drainage water in a rural area belonging to Bologna province (Italy). The experiment simulated a 0.1% pesticide agricultural water runoff/drainage event from a 12.5-ha farm by dissolving acetamiprid, metalaxyl, S-metolachlor, and terbuthylazine in 1000 L of water and pumping it into the CW. Water and sediment samples from the CW were collected for 4 months at different time intervals to determine pesticide concentrations by multiresidue extraction and chromatography-mass spectrometry analyses. In parallel, no active compounds were detected in the CW sediments during the experimental period. Pesticides dissipation in the wetland water compartment was modeled according to best data practices by fitting the data to Single First Order (SFO), First Order Multi-Compartment (FOMC) and Double First Order in Parallel (DFOP) kinetic models. SFO (except for metalaxyl), FOMC and DFOP kinetic models adequately predicted the dissipation for the four investigated molecules, with the DFOP kinetic model that better fitted the observed data. The modeled distribution of each pesticide between biomass and water in the CW highly correlated with environmental indexes as Kow and bioconcentration factor. Computed DT50 by DFOP model were 2.169, 8.019, 1.551 and 2.047 days for acetamiprid, metalaxyl, S-metolachlor, and terbuthylazine, respectively. Although the exact degradation mechanisms of each pesticide require further study, the FWS CW was found to be effective in treating pesticides-contaminated agricultural runoff/drainage water within an acceptable time. Therefore, this technology proved to be a valuable tool for mitigating pesticides runoff occurring after intense rain events.


Assuntos
Acetamidas , Alanina/análogos & derivados , Neonicotinoides , Praguicidas , Triazinas , Poluentes Químicos da Água , Áreas Alagadas , Praguicidas/análise , Agricultura/métodos , Água , Poluentes Químicos da Água/análise
2.
J Plant Physiol ; 171(16): 1500-9, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25105235

RESUMO

Drought stress negatively affects many physiological parameters and determines lower yields and fruit size. This paper investigates on the effects of prolonged water restriction on leaf gas exchanges, water relations and fruit growth on a 24-h time-scale in order to understand how different physiological processes interact to each other to face increasing drought stress and affect pear productive performances during the season. The diurnal patterns of tree water relations, leaf gas exchanges, fruit growth, fruit vascular and transpiration flows were monitored at about 50, 95 and 145 days after full bloom (DAFB) on pear trees of the cv. Abbé Fétel, subjected to two irrigation regimes, corresponding to a water restitution of 100% and 25% of the estimated Etc, respectively. Drought stress progressively increased during the season due to lower soil tensions and higher daily vapour pressure deficits (VPDs). Stem water potential was the first parameter to be negatively affected by stress and determined the simultaneous reduction of fruit xylem flow, which at 95 DAFB was reflected by a decrease in fruit daily growth. Leaf photosynthesis was reduced only from 95 DAFB on, but was not immediately reflected by a decrease in fruit phloem flow, which instead was reduced only at 145 DAFB. This work shows how water stress negatively affects pear fruit growth by reducing first its xylem and then its phloem inflow. This determines a progressive increase in the phloem relative contribution to growth, which lead to the typical higher dry matter percentages of stressed fruit.


Assuntos
Transporte Biológico , Secas , Transpiração Vegetal , Pyrus/fisiologia , Árvores/fisiologia , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Floema/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Pyrus/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Xilema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...